
ARTICLE IN PRESS
0378-4371/$ - se

doi:10.1016/j.ph

�Correspond
E-mail addr
Physica A 373 (2007) 831–836

www.elsevier.com/locate/physa
Optimal ranking in networks with community structure

Huafeng Xiea,b, Koon-Kiu Yanb,c, Sergei Maslovb,�

aNew Media Lab, The Graduate Center, CUNY New York, NY 10016, USA
bDepartment of Physics, Brookhaven National Laboratory, Upton, NY 11973, USA

cDepartment of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA

Received 6 April 2006; received in revised form 18 April 2006

Available online 23 June 2006
Abstract

The World-Wide Web (WWW) is characterized by a strong community structure in which groups of webpages (e.g.

those devoted to a common topic or belonging to the same organization) are densely interconnected by hyperlinks. We

study how such network architecture affects the average Google rank of individual communities. Using a mean-field

approximation, we quantify how the average Google rank of community webpages depend on the degree to which it is

isolated from the rest of the world in both incoming and outgoing directions, and a the only intrinsic parameter of

Google’s PageRank algorithm. Based on this expression we introduce a concept of a web-community being decoupled or

conversely coupled to the rest of the network. We proceed with empirical study of several internal web-communities within

two US universities. The predictions of our mean-field treatment were qualitatively verified in those real-life networks.

Furthermore, the value a ¼ 0:15 used by Google seems to be optimized for the degree of isolation of communities as they

exist in the actual WWW.

r 2006 Elsevier B.V. All rights reserved.
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The World-Wide Web (WWW)—a very large (�1010 nodes) network consisting of webpages connected by
hyperlinks—presents a challenge for the efficient information retrieval and ranking. Apart from the contents
of webpages, the network topology around them could be a rich source of information about their relative
importance and relevance to the search query. It is the effective utilization of this topological information [1]
that advanced the Google search engine to its present position of the most popular tool on the WWW and a
profitable company with a current market capitalization around $80 billion. As webpages can be grouped
based on their textual contents, language in which they are written, the organizations to which they belong,
etc., it should come as no surprise that the WWW has a strong community structure [2] in which similar pages
are more likely to contain hyperlinks to each other than to the outside world. Formally, a web-community can
be defined as a collection of webpages characterized by an above-average density of links connecting them to
each other.
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In this study, we are going to address the following question: How does the relative isolation of
community’s webpages from the rest of the network affects their Google rank? In addition we would speculate
the parameters of Google’s PageRank algorithm were selected for its optimal performance given the extent of
the community structure in the present WWW network.

In the heart of the Google search engine lies the PageRank algorithm determining the global ‘‘importance’’
of every webpage based on the hyperlink structure of the WWW network around it. When one enters a search
keyword such as ‘‘statistical physics’’ on the Google website the search engine first localizes the subset of
webpages containing this keyword and then simply presents them in the descending order based on their
PageRank values. While the details of the PageRank algorithm have undoubtedly changed since its
introduction in 1997, the central ‘‘random surfer’’ idea first described in Ref. [1] remained essentially the same.
From a statistical physics standpoint the PageRank simulates an auxiliary diffusion process taking place on
the network in question. A large number of random walkers are initially randomly distributed on the network
and are allowed to move along its directed links. Similar diffusion algorithms have been recently applied to
study citation and metabolic networks [3] and the modularity of the Internet on the hardware level represented
by an undirected network of interconnections between Autonomous Systems [4]. As in real web surfing, a
random walker of the PageRank algorithm could ‘‘get bored’’ from following a long chain of hyperlinks. To
model this scenario, the authors introduced a finite probability a for a random walker to directly jump to a
randomly selected node in the network not following any hyperlinks. This leaves the probability 1� a for it to
randomly select and follow one of the hyperlinks of the current webpage. According to Ref. [5], in the real
PageRank algorithm a was chosen to be 0:15. The algorithm then simulates this diffusion process until it
converges to a stationary distribution. The Google rank (PageRank) GðiÞ of a node i is proportional to the
number of random walkers at this node in such a steady state, and is usually normalized by hGðiÞi ¼ 1. In this
normalization, the flux of walkers entering a given site due to random jump from all the other nodes is given
by

PN
i¼1 aGi=N ¼ a. The continuity equation for this diffusion process reads GðiÞ ¼ aþP

j!ið1� aÞGðjÞ=KoutðjÞ. Here KoutðjÞ denotes the number of hyperlinks (the out-degree) of the node j and
the summation goes over all nodes j that have a hyperlink pointing to the node i. In the matrix formalism the
PageRank values are given by the components of the principal eigenvector of an asymmetric positive matrix
related to the adjacency matrix of the network. Such eigenvector could be easily found using a simple iterative
algorithm. To do this, all nodes must satisfy KoutðiÞ40. Practically, it is done by iteratively removing pages
with zero out-degrees from the network [5]. Consider a network in which Nc nodes form a community
characterized by an above-average density of edges linking these nodes to each other. Let Ecw denote the total
number of hyperlinks pointing from nodes in the community to the outside world, while Ewc denotes the total
number of hyperlinks pointing in the opposite direction. As the Google rank is computed in the steady state of
the diffusion process, the total current of surfers Jcw leaving the community must be precisely balanced by the
opposite current Jwc of surfers entering the community. Note that both Jcw and Jwc consist of two
contributions: the current via the direct hyperlinks between the community and the outside world and the
current due to random jumps.

In this paper we solve the problem of interplay between the community structure and the average Google
rank inside the community using a mean-field approximation. This approximation holds provided that
websites connecting the community to the outside world for outgoing and incoming traffic are an unbiased
sample of all websites in the community and the outside world correspondingly. That is to say, we assume that
their average in-degree and Google rank are approximately equal to those of other websites in their
compartment. Needless to say this approximation might prove to be wrong in real-life WWW networks. As we
will see later this would lead to an effective renormalization of parameters in our equations, while for the most
part preserving their functional form.

Let Gc ¼ hGðiÞii2C denote the average Google rank of webpages inside the community. Within our mean-
field approximation the average Google rank of community nodes sending links to the outside world is equal
to its overall average value inside the community Gc, so the average current flowing along a hyperlink pointing
away from the community is given by ð1� aÞGc=hKoutic and the total current leaving the community along all
those out-going links is ð1� aÞEcwGc=hKoutic. The total number of random walkers residing on nodes inside
the community is GcNc and the probability of a random jump to lead to a node outside the community is
Nw=ðNc þNwÞ, which is close to 1 as Nc5Nw. The contribution to the outgoing current due to such jumps is
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given by aGcNc, and thus the total outgoing current is Jcw ¼ ð1� aÞGcEcw=hKoutic þ aGcNc. Similarly, the
incoming current Jwc is given by ð1� aÞGwEwc=hKoutiw þ aGwNc. Equating these two currents one gets

Gc

Gw

¼
ð1� aÞEwc=ðhKoutiwNcÞ þ a
ð1� aÞEcw=ðhKouticNcÞ þ a

.

One may notice that hKoutiwNc and hKouticNc are, respectively, equal to EðrÞwc and EðrÞcw—expected numbers of
links connecting the community to the outside world in a random network with the same degree sequence as
the network in question [6]. By approximating Gw � 1, we finally arrive at the following equation:

Gc ¼
ð1� aÞEwc=EðrÞwc þ a

ð1� aÞEcw=EðrÞcw þ a
. (1)

For simplicity of notation, let us refer to the ratios Ewc=EðrÞwc and Ecw=EðrÞcw as Rwc and Rcw, respectively.
Roughly speaking, Rcw and Rwc quantify how isolated is a given community in both directions connecting it to
the outside world. In fact, in most communities both ratios Rwc and Rcw are below 1 because Ewc and Ecw are
typically less than their expected values in a randomized network [7]. One implication of the Eq. (1) is that the
average Google ranking of a community depends on the pattern of their connections with the outside world
through the ratios Rcw and Rwc. For example, if, Rwc is close to 1 (i.e., the number of links pointing to the
community is roughly the same as in a random network with the same degree distribution), Gc gets its
maximum value 1=a when Rcw5a, which could be interpreted as the community very isolated in the out-
direction. On the contrary, if the number of out-going links from the community to the outside world is
roughly the same as in a corresponding randomized network, Gc attains its minimum value of a if the
community is very isolated in the in-direction (Rwc5a). From Eq. (1) one could easily see that the relative
values of isolation ratios Rcw, Rwc and the parameter a determines the sensitivity of Gc to community’s
connections with the outside world. If either Rcw or Rwc is comparable to a, Gc is sensitive to the exact number
of links connecting the community to the outside world in this particular direction. Conversely, if both
Rwc;Rcw5a the average Google rank of community is no longer sensitive to its outside connections, and its
value is close to 1 which is the overall average value of Gi for all nodes. In this case, we would refer to this
community as being ‘‘decoupled’’ from the outside world. Of course, whether a community is decoupled or
coupled depends on the value of a. A community decoupled at a particular a could become coupled if a smaller
a is chosen.

To empirically investigate the interplay between Gc and a in real WWW, we downloaded [8] complete sets of
hyperlinks contained in all webpages within two US universities. We then studied intra-university
communities based either on common interests (like schools or departments) or common geographic
locations (like individual campuses of a large university system). (See Table 1 for details.) The relation between
Gc and a for six such communities are shown in Fig. 1. As expected from our calculations, as a is lowered in all
these communities Gc starts to significantly deviate from 1. Moreover, the community ‘‘UCLA social science’’
Table 1

The basic statistics about the academic WWW networks downloaded from Ref. [8]

Community Nc Ecc EðrÞcc
Ewc Ecw

UCLA Library 2028 23062 1699 755 2141

UCLA School of Management 1340 15983 739 175 169

UCLA Academic Tech. Services 1907 26597 2248 139 3113

UCLA Social Science Division 626 3986 50 258 142

UCLA Humanity Division 864 4846 79 397 445

LIU CWP Campus 2756 18376 4105 336 1393

We choose to study hyperlink networks within the Long Island University (LIU, 29 476 nodes and 160 457 edges) and separately within the

University of California at Los Angeles (UCLA, 135 533 nodes and 636 595 edges). Following Google’s original recipe [1] we iteratively

removed webpages with zero out-degree. The resulting networks consist of 15 471 nodes and 90 111 edges for the LIU and 31 621 nodes

and 353 370 edges for the UCLA. We then studied several large communities defined by the URL of their servers (e.g. .library.ucla.edu for

the ‘‘UCLA Library’’ community).
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Fig. 1. The average Google rank Gc of different communities as a function of the parameter a. The communities are within real WWW

networks of two US universities (see Table 1 for details). The data points are obtained by running the PageRank algorithm for different

values of a. Solid lines are two-parameter best fits to the data with Eq. (1).

Table 2

Rcw, Rwc, R�cw and R�wc for different communities

Community Rwc Rcw R�wc R�cw

UCLA Library 0.04 0.09 0.02 0.07

UCLA School of Management 0.01 0.01 0.005 0.006

UCLA Academic Tech. Services 0.007 0.1 0.003 0.07

UCLA Social Science Division 0.04 0.03 0.02 0.01

UCLA Humanity Division 0.04 0.08 0.05 0.07

LIU CWP Campus 0.03 0.09 0.01 0.02

Rcw and Rwc are obtained by counting the links from the community to the world and vice versa, divided by the corresponding number of

links in a random network with the same degree distribution [6]. R�cw and R�wc are result of fitting the Gc and a dependency via Eq. (1).
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deviates upward while all the others deviate downward. This could be qualitatively explained by Eq. (1), with
the observation that Rwc is greater than Rcw in this community, while Rwc is less than Rcw in all the others (see
Table 2). Furthermore, by looking at which values of a does Gc starts to significantly deviate from 1, one can
see that different communities become coupled to the outside world for different a’s. For example, ‘‘UCLA
Library’’ and ‘‘UCLA Academic Tech. Service’’ reach the level of Gc ¼ 0:8 when a is around 0.2–0.3, while
‘‘UCLA Anderson School of Management’’ and ‘‘LIU CWP campus’’ reach the same level of coupling only
for much lower a � 0:01–0.05.

We would like to point out that the ‘‘mean-field’’ assumption we used in deriving Eq. (1) can never be
perfectly true for real web-communities. For example, a community may be linked from the outside world by a
highly ranked authority page, and receive an incoming current larger than predicted by our mean-field
calculation. Conversely, it might only get links from relatively unimportant pages which would result in our
mean-field model overestimating the actual current. There is no universal rule for estimating even the sign of
the deviation from the mean-field predictions. Thus, it is impossible to calculate ‘‘corrections’’ to our mean-
field formula. Instead, those corrections have to be considered on a case-by-case basis. Allowing parameters
Rcw and Rwc in Eq. (1) to deviate from their values prescribed by the mean-field theory provides a simple
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mathematical formalism to quantify those corrections for real communities. We define R�cw and R�wc from the
two-parameter best fit of the actual GcðaÞ dependence in a given community with Eq. (1) (see Table 2). One
may regard R�cw and R�wc as effective parameters, which in addition to simple geometrical properties of the
community such as numbers of links connecting it to the outside world, take into account Google ranks of
actual pages sending those links. These ‘‘renormalized’’ ratios R�cw and R�wc would be more accurate than their
‘‘raw’’ counterparts (Rcw and Rwc) in determining whether a particular web-community is coupled to or
decoupled from the outside world at a given value of a.

The effective ratios R�cw and R�wc for the six communities used in our study are listed in Table 2 and
visualized in Fig. 2. Generally speaking, the closer to the origin is a community in this figure, the lower is the
value of a at which it first becomes coupled to the outside world. One could see that for a ¼ 0:15, which is the
actual value used by the Google [5], all of our six communities are essentially decoupled from the outside
world. However, if a much smaller value of a (say 0:01) is chosen, 5 out of 6 of our communities (all except for
the ‘‘UCLA Anderson School of Management’’) would become sensitive to their connections with the outside
world. In principle, Fig. 2 might be extended to include the region where R�cw and R�wc are above one, but by
definition those points are not referring to well-defined communities. From Eq. (1) it follows that it is the
asymmetry between Rcw and Rwc which determines whether Gc is greater than or less than 1. Thus, the
diagonal in Fig. 2 separates communities with Gc41 from those with Gco1. The ratio between the x- and y-
coordinates of the community in this plot determines the asymptotic value of its Google rank Gc for a close to
zero. Thus, the two communities: ‘‘UCLA Academic Tech. Service’’ and ‘‘UCLA Social Science’’, whose
ratios between their x- and y-coordinates in this plot are respectively the smallest and the largest in our set
deviate the most from Gc ¼ 1 as shown in Fig. 1.

The dominance of Google and the all-important role of its ranking led to the appearance of services offering
‘‘search engine optimization’’ to their clients. They promise to modify the content and the hyperlink structure
of client’s webpages to improve their Google rank. Our findings suggest one obvious way how such an
‘‘optimization’’ could be achieved: the number of links pointing to the outside world should be reduced to the
minimum while the number of intra-community hyperlinks is kept at the maximum. However, as we
demonstrated above the success of such a strategy depends on whether or not the community in question is
coupled to the outside world. Indeed, the average Google rank of a decoupled community is virtually
insensitive to the exact balance of hyperlinks connecting it to the outside world.

Since coupling of web-communities to the outside world and the resulting ability of their webmasters to
artificially boost the ranking is undesirable for a search engine, it should come as no surprise that the internal
Fig. 2. R�cw and R�wc for different communities. Communities inside the lightly shaded square are decoupled from the rest of the world for

a ¼ 0:15, while the ones inside the dark shaded square are decoupled for a ¼ 0:01.
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parameter a chosen by the Google’s team is carefully selected to minimize this effect. To make most of the
communities decoupled the value of a in the PageRank algorithm should be as large as possible. On the other
hand, for very large a the algorithm does not take into account the relevant network properties of the WWW.
Indeed for a close to 1, random surfers rarely follow hyperlinks and thus nearly all topological information
about the network is lost. Therefore, the optimal value of a should be chosen based on the realistic values of
isolation parameters Rcw and Rwc. In our study we found all the communities to be effectively decoupled at
a ¼ 0:15 but not at smaller values of a (e.g. a ¼ 0:01 shown as a dark shaded square in Fig. 2). Thus, for our
sample of web-communities, a ¼ 0:15 proposed in Ref. [1] indeed strikes the best possible balance between the
opposing demands on the value of a.

Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886,
Division of Material Science, US Department of Energy.
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